Vol.11 No. 2 June 1989

变量泵驱动的液压挖掘机转台最佳转速计算

洪 昌 银

擅 璺 本文对变量泵驱动的液压挖掘机转台回转速度图和运动规律进行了分 析,导出了转台最佳转速和相应的回转循环时间的计算式,提出了双梯形速度图的 判据和转台最大转速临界值的计算式, 并有实例进行比较。

关键词 变量泵, 液压挖掘机, 转台最佳转速

变量泵驱动的回转机构转台回转一般运动规律

双泵双回路全功率变量系统是中小型液压挖掘机最常用的传动型式。为了提高生产率, 缩短作业循环时间,挖掘机作业时转台的回转动作与动臂的升降动作一般同时进行。两条回 路的压力和通常在满斗回转和举臂时超过了泵的起始变量压力,而在空斗返回和降臂时小于 泵的起始变量压力,因此转台的转速与运动特性,满斗回转时应按变量系统考虑,空斗返回 时应按定量系统考虑。假定回转机构为纯液压制动,则转台回转的速度图一般有图1所示的 三种型式。

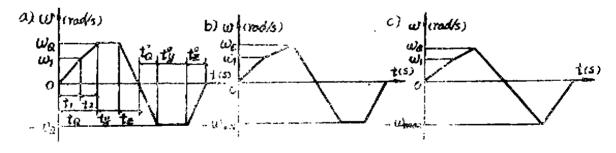


图 1 转台回转速度图型式

图 1 α的特点是双梯形, 满斗回转和空斗返回的最大转速均为ωα, 图 1 b 的特点是满斗 回转呈三角形,空斗返回呈梯形,满斗最大转速ωο 等于或小于空斗最大转速ωσσε, 图 1 c的 特点是三角形,满斗最大转速oo小于空斗最大转速omax。

本文1988年9月14日收到。

表 1

I	况	转 第 (rad)	时 间(S)
			$t_1 = \frac{J\omega_1}{M}$
層	 动	$\varphi_2 = \frac{J}{3M} \left(\frac{\omega_Q^3 - \omega_1^3}{\omega_1} \right)$	$t_2 = \frac{J}{2M} - \left(\frac{\omega_Q^2 - \omega_1^2}{\omega_1}\right)$
斗	加速	$\phi_{\mathbf{Q}} = \frac{J}{6M} \left(-\frac{\omega_{1}^{3} + 2\omega_{\mathbf{Q}}^{3}}{\omega_{1}} - \right)$	$t_{\mathbf{Q}} = \frac{J}{2M} \left(-\frac{\omega_1^2 + \omega_{\mathbf{Q}}^2}{\omega_1} \right)$
凹	\	$=\frac{J_{\omega_{\mathbf{Q}}^{2}}}{6M}-\left(\frac{1}{R^{2}}+2R\right)$	$=\frac{I\omega_0}{2M}\left(R+\frac{1}{R}\right)$
转	· 匀速 	$\varphi_{3} = \varphi - \frac{J\omega_{Q}^{2}}{6M} \left(2R^{\frac{1}{2}} - \frac{1}{R^{2}} + \frac{3}{C} \right)$	$t_{\mathbf{y}} = \frac{\phi_{\mathbf{y}}}{\omega_{\mathbf{Q}}}$
	制动减速	$\phi_{\kappa} = \frac{J\omega_{\mathbf{Q}}^2}{2MC}$	$t_{\mathbf{x}} = \frac{J\omega_{\mathbf{Q}}}{MC}$
호 라 ᅜ	启动 加速	$\phi_{\mathbf{Q}}^{\circ} = -\frac{J_{\mathbf{B}} \otimes_{\mathbf{Q}}^{2}}{2M}$	$t_{\mathbf{Q}}^{0} = -\frac{J_{\mathbf{Q}}\omega_{\mathbf{Q}}}{M}$
	 匀速 	$\varphi_{\gamma}^{\circ} = \varphi - \frac{J_{0} \omega_{Q}^{2}}{2M} - \left(1 + \frac{1}{C}\right)$	$i_{\lambda}^{0} = \frac{\phi_{\lambda}^{0}}{\omega_{Q}}$
回 ———	制动 减速	$\varphi_z^\circ = \frac{J_0 \omega_Q^2}{2MC}$	$t_z^0 = \frac{J_0 w_Q}{MC}$
回转循环时间 (S)		$T = \frac{J_{\circ}\omega_{Q}}{M} \left(\lambda R + \frac{3(1+\lambda)}{C} + 3 + \frac{3\lambda}{R} \right)$	$-\frac{\lambda}{R^2}$ $+\frac{2\phi}{\omega_Q}$

表中符号说明:

φ ---特台转角 (rad)

 J_o, J ——空斗返回与满斗回转时转台的转动惯量, $(kg-m^2)$, $\lambda = \frac{J}{J_o}$

M——作用在转台上的最大启动力矩 (N·m)

c——转台最大制动力矩与最大启动力矩的比值

R——全功率变量泵的实际变量系数

ω₁——对应于起始变量时转台的角速度 (rad/s)

ω_Q---加速结束时转台的角速度 (rad/s)

η。——传动总效率,包括液压马达的容积效率和机械效率,回转减速机的机械效率,回转支承的机械效率等

表 2				
<u> </u>	况	转 角 (rad)	时 间(S)	
满	启	$\varphi_1 = \frac{J\omega_1^3}{2000N\eta_{\theta}}$	$t_1 = \frac{J\omega_1^2}{1000N\eta^\circ}$	
(PM)	动	$J(\omega_{\mathbf{Q}}^3 - \omega_{\mathbf{I}}^3)$	$t_2 = \frac{J(\omega_Q^2 - \omega_1^2)}{2000N\eta_0}$	
斗	加	$\varphi_2 = \frac{1}{3000N\eta_0}$	$f_2 = \frac{1}{2000N\eta_0}$	
	速	$\phi_{\mathbf{Q}} = \frac{J\omega_{\mathbf{Q}}^{3}}{6000N\eta_{0}} \left(2 + \frac{1}{R^{3}} \right)$	$t_{\rm Q} = \frac{J\omega_{\rm Q}^2}{2000N\eta_0} \left(1 + \frac{1}{R^2} \right)$	
转	匀速	$\varphi_7 = \varphi - \frac{J\omega_Q^3}{6000N\eta_0} \left(2 + \frac{1}{R^3} + \frac{3}{CR} \right)$	$t_{\tau} = \frac{\phi_{\tau}}{\omega_{\mathbf{Q}}}$	
	制动减速	$\varphi_{\mathbf{z}} = \frac{J\omega_{\mathbf{Q}}^3}{2000N\eta_0} \left(\frac{1}{CR}\right)$	$t_{x} = \frac{J\omega_{\mathbf{Q}}^{2}}{1000N\eta_{0}} \left(\frac{1}{CR}\right)$	
空	启动加速	$\varphi_{\mathbf{Q}}^{\circ} = \frac{J_{\mathbf{Q}} \omega_{\mathbf{Q}}^{3}}{2000 N \eta_{\mathbf{Q}}} \left(\frac{1}{R} \right)$	$t_{\mathbf{Q}}^{\circ} = \frac{J_{\circ}\omega_{\mathbf{Q}}^{2}}{1000N\eta_{\theta}} \left(\frac{1}{R} \right)$	
斗 迈	 匀速 	$ \varphi_{\mathbf{y}}^{\alpha} = \varphi - \frac{J_0 \omega_{\mathbf{Q}}^3}{2000 N \eta_0} \left(\frac{1}{R} + \frac{1}{CR} \right) $	$t_{\mathbf{f}} = \frac{\phi_{\mathbf{f}}^{0}}{\omega_{\mathbf{Q}}}$	
回	制动减速	$\varphi_{\mathbf{x}}^{\circ} = \frac{J_0 \omega_{\mathbf{Q}}^{\$}}{2000 N \eta_0} \left(\frac{1}{CR} \right)$	$t_{\mathbf{x}}^{\circ} = \frac{J_{\mathbf{\theta}} \omega_{\mathbf{Q}}^{2}}{1000N \eta_{\mathbf{\theta}}} \left(\frac{1}{CR} \right)$	
回转循环时间 (S)		$T = \frac{J_0 \omega_Q^2}{6000 N \eta_0} \left(\lambda + \frac{3(1+\lambda)}{CR} + \frac{3}{R} + \frac{3\lambda}{R^2} - \frac{\lambda}{R^3} \right) + \frac{2\phi}{\omega_Q}$		

2 转台最佳转速计算

从文献〔2〕知,梯形速度图具有回转循环时间短,能耗少,系统发热小等优点,因此本文就双梯形速度图导出转台最佳转速计算公式。

$$T=t_{\scriptscriptstyle Q}+t_{\scriptscriptstyle y}+t_{\scriptscriptstyle z}+t_{\scriptscriptstyle Q}^{\circ}+t_{\scriptscriptstyle y}^{\circ}+t_{\scriptscriptstyle z}^{\circ}$$

$$= \frac{J_0 \omega_Q^2}{6000N\eta_0} \left(\lambda + \frac{3(1+\lambda)}{CR} + \frac{3}{R} + \frac{3\lambda}{R^2} - \frac{\lambda}{R^3} \right) + \frac{2\phi}{\omega_Q}$$
 (1)

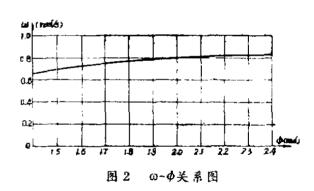
由
$$\frac{dT}{d\omega_Q} = 0$$
, $\frac{d^2T}{d\omega_Q^2} > 0$ 得 $\omega_Q = \sqrt[3]{\frac{6000N\phi\eta_0}{J_0A}}$ (rad/s)

或
$$\omega_Q = \sqrt{\frac{6 M \varphi}{J_0 \cdot A \cdot R}} \qquad (rad/s) \qquad (2')$$

式中
$$A = \lambda + \frac{3(1+\lambda)}{CR} + \frac{3}{R} + \frac{3\lambda}{R^2} - \frac{\lambda}{R^3}$$
 (3)

由式(2)可知,在给定的工况下, J_0,λ,ϕ,R 就确定了, 若 回 转机构所需的功率N已 知,则M与 ω_0 之间有一个最佳匹配,这个匹配要保证①转台回转的速度图为双梯形,②回转循环时间最短。当然,为使求得的最佳转速有实际意义,给定的工况和给定的功率应有代表性。

由于回转装置(包括回转机构和回转支承)受配套件的供应限制,不能满足M与ωα之间的最佳匹配,但应满足转台回转的速度图为双梯形,这样才会使挖掘机作业时有良好的回转 性能。


由于 $J/J_0 > 1$,因此能保证满斗回转的速度图为梯形,空斗返回就必然是梯形。 保证满斗回转为梯形速度图的条件为 $\phi_0 > 0$,由此得满斗回转的极限转速为

$$B = \sqrt[3]{\frac{6000N\eta_0}{J\left(2 + \frac{1}{R^3} + \frac{3}{CR}\right)}}$$
(4)

式 (4) 当 ϕ >1.4 (rad) 时的 ω - ϕ 曲线 如图 2 所示。

中た

由图可知, ω - ϕ 是一条微向上凸的平滑曲线,转台的转速变化范围小,而转角变化范围大。反铲挖掘机的转台转角范围一般在75°~135°之间(即 ϕ =1.309~2.356 rad),按图2,对应的转速变化范围为1.902r/min(即 $\Delta\omega$ =0.2rad/s),由此,确定转台的回转速度应相当慎重。

保证空斗返回为梯形速度图的条件为 ¢°;>0,由此得空斗返回的极限转速为

转台回转的最大速度 $\omega_{max} < \omega_i$ 时则转台的回转速度图为双梯形(如图 1 a),回转循环时间T按式(1)计算。

当 $\omega_1 = \omega_{max} < \omega_1^\circ$ 时满斗的回转速度图为三角形,空斗的返回速度图为梯形 (如图 1 b), $\omega_2 = \omega_{max}$, 回转循环时间T按下式计算

$$T = \frac{J_0 \omega_Q^2}{200N\eta_0} \left(\lambda + \frac{\lambda}{R^2} + \frac{1}{R} + \frac{1+2\lambda}{CR} \right) + \frac{\phi}{\omega_Q}$$
 (s)

当 $\omega_i < \omega_{max} < \omega_i^\circ$ 时满斗的回转速度图为三角形,空斗的返回速度图为梯形 (如图 1 b), $\omega_Q < \omega_{max}$,回转循环时间T按下式计算

$$T = \frac{J_0 \omega_{max}}{2 M} \left(\frac{\lambda}{R} + 1 + \frac{1}{C} \right) + \frac{J \omega_Q}{2 M} \left(\frac{\omega_Q R}{\omega_{max}} + \frac{2}{C} \right) + \frac{\varphi}{\omega_{max}}$$
 (s) (7)

当 $\omega_1 < \omega_{max} = \omega_j^*$ 时转台的回转速度图为双三角形 (如图 1 c) , 回转循环时间T按下式计算

$$T = \frac{J_0 \omega_{max}}{2M} \left(\frac{\lambda}{R} + 2 + \frac{2}{C} \right) + \frac{J_{\omega_Q}}{2M} \left(\frac{\omega_Q R}{\omega_{max}} + \frac{2}{C} \right)$$
 (8)

对于后两者,应根据已知的空斗返回最大转速@max去求相应的满斗回转最大转速@o,即

$$\omega_Q^3 + \frac{1.5}{C} \left(\frac{\omega_{max}}{R} \right) \omega_Q^2 + \frac{1}{2} \left(\frac{\omega_{max}}{R} \right)^3 - \frac{3M\phi}{J} \left(\frac{\omega_{max}}{R} \right) = 0$$
 (9)

式中

$$M = -\frac{1000NR\eta_0}{\omega_{max}} \qquad (N \cdot m)$$
 (10)

3 实 例

例 1. 已知双泵双回路全功率变量系统的反铲液压挖掘机整机质量G=30t, 单泵最大流量Q=200L/min, 回转机构过载阀调定压力 $p_1=21.5MPa$, 动臂的升降与转台回转动作同时进行,泵的起始变量压力 $p_0=12.263MPa$, 在给定工况下 $\phi=1.5708rad$, $J_0=580G^{5/8}=167995kg-m^2$, $\lambda=1.5$, $J=251992kg-m^2$, 动臂提升的平均压力 $p_2=14.511MPa$, 求转台最佳转速和相应的转台回转运动特性。

【解】1。满斗回转时的变量系数

$$R = \frac{p_1 + p_2}{2 p_0} = \frac{21.5 + 14.511}{2 \times 12.263} = 1.468$$

2. 假定回转马达的容积效率 η_{V} ,机械效率 η_{M} ,回转减速机机械效率 η_{1} ,回转支承机械效率 η_{1} 等均为0.95,则

$$\eta_0 = \eta_V \cdot \eta_M \cdot \eta_1 \cdot \eta_2 = 0.95^4 = 0.8145$$

$$C = \frac{1}{(\eta_M \cdot \eta_1 \cdot \eta_2)^2} = 1.36$$

3. 提供给回转马达的液压功率

$$N = \frac{P \cdot Q}{60000R} = \frac{21500 \times 200}{60000 \times 1.468} = 48.819 \text{ (kW)}$$

4. 转台最佳转速由式(2) 得 $\omega_Q = 0.63 (rad/s)$ 或6.016(r/min),转台最大启动力矩由式(10)得M = 92654 (N·m),相应的 $\omega_1 = \frac{\omega_Q}{R} = 0.429$ (rad/s)

相应的回转循环时间由式(1)得T = 7.479(s).

- 5. 转台回转的运动特性见图 3.
- 例 2. 原始数据同例 1, 只是转台的最大 转 速 是 给 定 的, 一 为 0.7302 rad/s, 一 为 0.816 rad/s, 一 为 0.857 rad/s, 试分别计算转台回转速度图和运动特性。

【解】1. 水梯形速度图的极限转速@;与@"

由式 (4) 知 $\omega_i = 0.6282 \phi^{1/3}$

式中

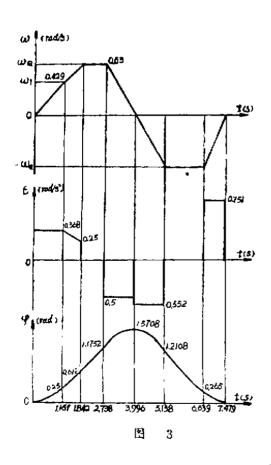
$$B = \sqrt[8]{\frac{60000 \times 48.819 \times 0.8145}{251992 \left(2 + \frac{1}{1.468^3} + \frac{3}{1.36 \times 1.468}\right)}} = 0.6282$$

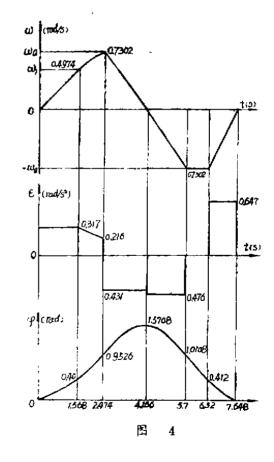
将Φ值1.5708代入得ω, = 0.7302 (rad/s)

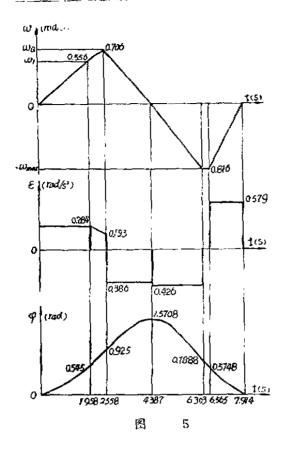
由式(5)知

$$\omega_i^{\circ} = 0.7373 \phi^1/^3$$

式中

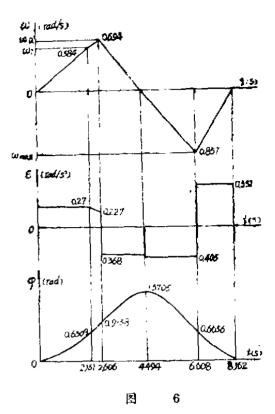

$$D = \sqrt[3]{\frac{2000 \times 48.819 \times 0.8145}{167995 \left(\frac{1}{1.468} + \frac{1}{1.468 \times 1.36}\right)}} = 0.7373$$

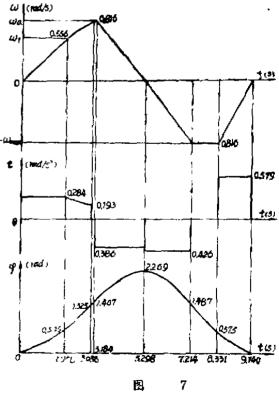

将Φ值1.5708代入得 ω; = 0.857 (rad/s)


2. 对 $\omega_{max} = 0.7302 (rad/s)$ 属于 $\omega_{rax} < \omega_i^\circ$, 因此满斗回转的速度图为三角 形,空斗返回的速度图为梯形,且满斗最大转速与空斗最大转速相等。

回转循环时间按式(6)得T=7.648(s),转台最大启动力矩由式(10)得 $M=79940(N\cdot m)$, $\omega_1=0.4974$ (rad/s) ,转台回台的运动特性见图 4 。

3. 对 $\omega_{max}=0.816(rad/z)$ 属于 $\omega_{rax}<\omega_{i}^{\circ}$,因此满斗回转的速度图为三角形、空斗返回的速度图为梯形,但满斗最大转速小于空斗最大转速。




由式(10) 得 $M = 71534(N \cdot m)$,由式(9) 得满斗最大转速 $\omega_Q = 0.706$ (rad/s),相应的 $\omega_L = \frac{\omega_{max}}{R} = 0.556(rad/s)$,回转循环时间按式 (7)得T = 7.974 (s),转台回转的运动特性 见图 5.

4. 对 $\omega_{max} = 0.857 (rad/s)$ 属于 $\omega_i < \omega_{max} = \omega_i^\circ$, 因此转台回转的速度图为双三角形。由式(10)得 $M = 68112 (N \cdot m)$, 由式(9)得满斗最大转速 $\omega_0 = 0.694 (rad/s)$, 相应的 $\omega_1 = 0.584 (rad/s)$, 回转循环时间按式(8)得T = 8.162 (s)。转台回转的运动特性见图 6.

例3. 原始数据同例1,仅 ϕ =2.269(rad)(或130°),转台最大转速仍取0.816(rad/s),试计算转台回转速度图和运动特性。

【解】1. 由式(4)得ω;=0.825 rad/s>0.816, 其速度图必然为双梯形。

- 2. $\omega_1 = \frac{\omega_{max}}{R} = 0.556$ (rad)回转循环时间接式(1)得T = 9.74 (s), 运动特性见图7。
- 3. 速度图虽为双梯形,但0.816并非最佳转速。由式(2)得转台最佳转速 ω_Q^* = 0.712 (rad/s) ,相应的T = 9.556(s) < 9.74(s)

4 结 论

- 1. 通过实例的运动特性图比较,可知转台最大转速 $\omega_{max} < \omega_j$ 时,转台 回转速度图为双梯形,无论满斗或空斗回转都有匀速阶段,转台回转性能较好,如 ω_{max} 符合式(2)要求,其回转循环时间为最短, $\omega_j < \omega_{max} < \omega_j^s$ 时,其速度图满斗为三角形,空斗为梯形,三角形速度图无匀速阶段,存在有加速度由正值立即变为负值的关变,从回转性能考虑,转台的最大转速 ω_{max} 应小于由公式(4)所确定的临界转速 ω_j , $\omega_i < \omega_{max} = \omega_j^s$ 时,其速度图为双三角形,满斗回转起动加速不到 ω_{max} 就应制动,否则转台转角就要超过规定值,造成很大溢流损失,且满斗空斗制动都存在加速度的突变,因此回转性能较差, $\omega_{max} > \omega_j^s$, 回转性能极差,应尽量避免。
- 2. 给定工况应是最经常出现的工况, 主要是确定回转半径和转角。 对中小型液压挖掘机一般取最大挖掘半径的三分之二为回转半径,转角为 $75\sim135^\circ$, 标准转角为 90° 。 同一转速,对不同工况回转性能也异。如例 2、例 3中 $\omega_{max}=0.816$ (rad/s), 当 $\phi=90^\circ$ 时满斗回转为三角形速度图,当 $\phi=130^\circ$ 时却是梯形速度图。为使转台有良好的回转性能, 工 况的选择一定要有代表性。
- 3. 回转机构过载阀的调定压力 p_1 应保证有足够大的起动力矩,但起动力矩要受回转加速度和地面附着力矩的限制。

参 考 文 献

- 〔1〕 同济大学等编《单斗液压挖掘机》 (第二版), 中国建筑工业出版社, 1986. 12
- 〔2〕陈世教,定量泵驱动的液压挖掘机回转机构最佳转速计算,《工程机械》,1987.10

(编辑: 刘家凯)

THE CALCULATION OF THE UPPERCARRIAGE OPTIMUM SWING SPEED FOR HYDRAULIC EXCAVATOR DRIVEN BY VARIABLE DISPLACEMENT PUMPS

Hong Changyin

ABSTRACT In this paper, the uppercarriage swing speed figures and the uppercariage motional law for hydraulic excavator driven by variable displacement pumps are analyzed. The calculating formulas for the uppercarriage optimum swing speed and the corresponding duration of the swing cycle are introduced. The determination of twin trapezoidal swing speed figure and the equations of limiting value for maximum uppercarriage swing speed are derived. In the meantime, examples are given to make comparison.

KEY WORDS variable displacement pumps, hydraulic excavator, the uppercarriage optimum swing speed.