重庆建筑工程学院学报

第14卷第1期JOURNAL OF CHONGQING INSTITUTE OFVol.14 No.11992年3月ARCHITECTURE AND ENGINEERINGMarch 1992

塔式起重机行走式底架结构总成 的计算机辅助分析和设计

王炳乐 周首光

宋立权 喻志刚

(机电系)

第 要 本文是"塔式起重机金属结构计算机辅助设计"科研课题其中的一个成果^[5,0,0,7]。文中以井型底架结构为例,首先说明了塔式起重机行走式底架结构总成力学模型的建立方法;随后给出了它们优化设计数学模型和计算机程序的N·S 图,并应用离散优化技术作了实例计算;最后就行走式底架结构总成设计中有关的问题作了简要说明。

关键词 塔式起重机,底架结构,金属结构,计算机辅助设计

塔式起重机行走式底架结构总成,工程中常见的型式有: #型、十字型、X型和水母式 等多种。它们的共同特点是均为高次超静定空间桁梁混合结构,其力学模型的简化和求解, 优化设计数学模型的建立和求解方法有许多共同之处。本文试以 # 型行走式底架结构总成为 例,首先说明了这类结构总成力学模型的建立方法;随后给出了它们统一的优化设计数学模 型和计算机程序的N-S图,并应用离散优化技术作了实例计算;最后就行走式底架结构总成 设计中有关的问题作了简要说明。

1 力学模型[2]

塔式起重机行走式底架结构总成包括塔身第一节架、塔身撑杆和底架主梁等组成部分。 其#型行走式底架结构总成的计算简图如图 1 所示。 外载荷包括作用在撑杆上支承面 A_2B_2 C_2D_2 上的弯矩 M'_{px} 、 M'_{py} ,剪力 Q'_{px} 、 Q'_{py} ,轴向力N'和扭矩 M'_{R} ;作用 在底架上梁上的压 重 Q_y 和各部分自重;以及塔机行走时行走轨道作用于车轮的侧向力 $P_{s.}$ 为了便于利用结构 的对称性从而简化计算,特将上述外载荷分为① N'和 Q_y ;② M'_{yy} 和 Q'_{xy} ;③ M'_{sx} 和 Q'_{yy} ;

本文1989年9月19日收到。

①第一节架; ②塔身撑杆; ③斜撑; ①上梁; ⑤下梁;

④*M*⁴_R和⑤*P*_s五组,先分别求出各组外载引起的撑杆轴力和主梁有关部位的内力,然后叠加 即可求得总轴力和总内力。自重单独计入,即自重对结构内力的影响不计撑杆的作用。为节 省篇幅,以下以外载*M*⁴_{py}和*Q*⁴_{ps}组说明其求解过程。

1.1 建立力法基本方程

由于只考虑 M'_{py} 和 Q'_{px} ,故由结构的对称性易知,总成的支座反力是静定的,并且塔身 的四根撑杆和底架的四根斜撑,它们的轴力,其大小各自相等,方向两两相反,故多余未知 力只有二个,切断四撑杆和四斜撑,则得该结构在承受外载 M'_{py} 和 Q'_{px} 时的基本结构(图2)。 分别令 $X_{My1}=1$ 和 $X_{My2}=1$,绘出对应的弯矩图(图3,a,b),再将 M'_{py} 和 Q'_{px} 单独作 用于基本结构,绘出对应的弯矩图(图4,a,b),

图3,4中

$$\begin{split} S_{2} &= 0.5(l_{1} - l_{2}), \ P_{oMy} = 0.5M_{oy}/l_{2}, \ M'_{3y} = 2a_{T}\cos\gamma, \ M_{oy} = M'_{oy} + 4l_{T}\cos\alpha, \\ h_{1} &= S_{2} \cdot \cos\gamma, \ h_{2} = S_{2} \cdot \cos\beta, \ h_{3} = S_{2} \cdot P_{oMy}, \ h_{4} = S_{2} \cdot \cos\alpha, \ h_{5} = S_{2} \cdot \sin\varphi, \\ h_{8} &= S_{2} \cdot \cos\varphi \\ P_{My} &= 0.5M'_{py}/l_{2}, \ R_{My} = 0.5M'_{py}/l_{1}, \ h_{7} = S_{2} \cdot R_{My}, \ h_{8} = S_{2} \cdot P_{My} \\ M_{Qx} &= l_{T} \cdot Q'_{px}, \ P_{Qx} = 0.5M_{Qx}/l_{2}, \ R_{QxH} = 0.25Q'_{px}, \ R_{Qx} = 0.5M_{Qx}/l_{1}, \\ h_{9} &= S_{2} \cdot R_{Qx}, \ h_{10} = S_{2} \cdot R_{QxH}, \ h_{11} = S_{2} \cdot P_{Qx} \end{split}$$

图 2

图 3

۰ ۱

 $\tilde{7}6$

.

图 4

利用图解积分法,易得该结构在承受外载 M'_{py} 和 Q'_{px} 时的力法基本方程为: $F_{My} \cdot X_{My} = -D_{My}$

式中:

F_{My}——柔度矩阵

$$F_{My} = [f_{ij}]_{2,2} \cdot f_{11} = \frac{1}{EI_T} \cdot y_3(l_T, M'_{oy}, M_{oy}, M'_{oy}, M_{oy})$$

$$+ \frac{4}{EI_{Vx}} \cdot [y_1(S_2, h_1) + y_1(0.5l_2, h_1)]_1^2$$

$$+ \frac{4}{EI_{Hx}} \cdot [y_1(S_2, h_2) + y_1(0.5l_2, h_2)]_1^2$$

$$+ \frac{2}{EI_{Vs}} \cdot [2y_1(S_2, h_3) + l_2 h_3^2]_1^2$$

$$+ \frac{2}{EI_{Hs}} \cdot [2y_1(S_2, h_4) + l_2 h_4^2]_1^2$$

$$+ \frac{l_{g1}}{EA_{G1}}$$

$$f_{22} = \frac{4}{EI_{Hx}} \cdot [y_1(S_2, h_5) + y_1(0.5l_2, h_5)]_1^2$$

(1)

4

$$\begin{aligned} &+ \frac{2}{EI_{Hs}} \cdot [2y_{1}(S_{2}, h_{6}) + l_{2}h_{6}^{2}] \\ &+ \frac{l_{g2}}{EA_{G2}} \\ f_{12} &= \frac{4}{EI_{Hs}} \cdot [y_{2}(S_{2}, h_{2}, -h_{5}) + y_{2}(0.5l_{2}, h_{2}, -h_{5})] \\ &+ \frac{2}{EI_{Hs}} \cdot [2y_{2}(S_{2}, h_{4}, h_{6}) + l_{2}h_{4}h_{6}] \\ &= f_{2,1} \\ X_{My} &\longrightarrow & S \stackrel{(M_{My1}, X_{My2}]^{T}}{X_{My} = [M_{My1}, X_{My2}]^{T}} \\ D_{My} &\longrightarrow & $ M_{0} = [D_{My1}, D_{My2}]^{T} \\ D_{My1} &= \frac{1}{EI_{T}} \cdot y_{3}(l_{T}, M'_{oy}, M_{oy}, -M'_{py}, -M'_{py} - M_{Qx}) \end{aligned}$$

$$EI_{T} = 0 = h = h = h$$

$$+ \frac{4}{EI_{1'x}} \cdot [y_{2}(S_{2}, h_{1}, -h_{7} - h_{0}) + y_{2}(0.5l_{2}, h_{1}, -h_{7} - h_{0})]$$

$$+ \frac{2}{EI_{Vs}} \cdot [2y_{2}(S_{2}, h_{3}, -h_{8} - h_{11}) - l_{2}h_{3}(h_{8} + h_{11})]$$

$$+ \frac{2}{EI_{Hs}} \cdot (2y_{2}(S_{2}, h_{4}, -h_{10}) - l_{2}h_{4}h_{10}]$$

$$D_{My2} = \frac{2}{EI_{Hs}} \cdot [2y_{2}(S_{2}, h_{6}, -h_{10}) - l_{2}h_{6}h_{10}]$$

以上诸式中, I_T 为塔身截面惯性矩, I_{Vx} 、 I_{Hx} 和 I_{Vx} 、 I_{Hx} 分别为下梁和上梁截面对垂 直水平轴的惯性矩, 17、1g1、1g2 分别为塔身第一节架、撑杆、斜撑的长度, AG1、AG2 为撑 杆和斜撑的截面积, E为弹性模量,其余见图1至6。另外:

$$S_{2} = 0.5(l_{1} - l_{2})$$

$$y_{1}(S, h) = \frac{1}{3}Sh^{2}$$

$$y_{2}(S, h_{1}, h_{2}) = -\frac{1}{3}Sh_{1}h_{2}$$

$$y_{3}(S, h_{3}, h_{4}, h_{5}, h_{6}) = -\frac{1}{6}S[z(h_{3}h_{5} + h_{4}h_{6}) + h_{3}h_{6} + h_{4}h_{5}]$$

$$AJ 法基本方程, 求 X_{My}$$

1.2 解力法基本方符

$$X_{My} = -F_{My}^{-1} \cdot D_{My} \tag{2}$$

1.3 计算有关部位的内力

$$A_{M_y} = A_{M_yp} + T_{M_y} \cdot X_{M_y} \tag{3}$$

如要计算的内力为:下梁AEFB截面 A 的垂向剪力 Q_A ,截面E两侧的垂向剪力 Q_{ELX} 、 QERX; 轴向力 NELX、NERX, 垂面弯矩 MELV、MERV 和水平弯矩 MELU、 MERH, 以及上梁

EA_1D_1H 截面E的垂向 剪力 Q_E , 截面 A_1 两侧的垂向剪力 Q_{AII} , Q_{AIR} , 轴向力 I	V ATI .
NAIR, 垂面弯矩 MAILY、 MAIRY, 水平弯矩 MAILH、 MAIRH, 即	
$A_{My} = [Q_A, Q_{ELX}, Q_{ERX}, N_{ELX}, N_{ERX}, M_{ELV}, M_{ERV}, M_{ELH}, M_{ERH}, Q_E,$	
Q_{AIL} , Q_{AIR} , N_{AIL} , N_{AIR} , M_{AILV} , M_{AIRV} , M_{AILH} , M_{AIRH}] ^T	
则.	
$A_{Myp} = [R_{My}, R_{My}, R_{My} - P_{My}, 0, 0, -h_7, -h_7, 0, 0, -P_{My}, -P_{M$	
$0, 0, 0, h_{s}, h_{s}, 0, 0]^{T}$	
$+ [R_{QX}, R_{QX}, R_{QX} - P_{QX}, - R_{QXH}, 0, -h_{\theta}, -h_{\theta}, 0, 0, P_{QX},$	
P_{QX} , 0, 0, 0, $-h_{11}$, $-h_{11}$, h_{10} , $h_{10}]^T$	
$T_{v} = \begin{bmatrix} -\cos\gamma & -\cos\gamma & P_{oMy} - \cos\gamma & \cos\alpha & 0 & h_1 & h_1 & -h_2 & -h_2 \end{bmatrix}$	
$I_{My} = \begin{bmatrix} 0 & 0 & 0 & -\cos\varphi & 0 & 0 & h_{\mathfrak{b}} & h_{\mathfrak{b}} \end{bmatrix}$	
$-P_{oMy} - P_{oMy} 0 \cos\beta 0 h_3 \cdot h_3 -h_4 -h_4 \top^T$	
$0 0 -\sin \varphi 0 0 -h_6 -h_6$	
在各组外载对应的未知力和内力求到后,则总未知力和总内力可用下式求出:	
$X = X_{NQ} + X_{My} + X_{MX} + X_{MR} + X_{PS}$	(4)
$A = A_{NQ} + A_{My} + A_{MX} + A_{MR} + A_{PS}$	(5)

2 优化设计数学模型

由于塔身第一节架的设计参数是由塔身设计确定的,故#型底架结构总成设计尚须确定 的参数有: 塔身撑杆的截面型式和有关尺寸, 底架主梁, 包括上梁和下梁的截面型式和有关 尺寸,底架斜撑的截面型式和有关尺寸。这三部分的设计变量名称和个数视其截面型式而 异,设计指标以重量最轻为追求目标,设计约束主要出自强度条件、刚度条件和稳定性条 件"117.31。为清晰、简单起见,以下以列表方式给出这些内容。

2.1	塔身撑样	Ŧ
-----	------	---

编号•	1	2	3**	4***	5	6
截面型式						
设计变量	$x_{i+1} = D$ $x_{i+2} = t$	\	$x_{i+1} = N$	0G1		$x_{i+1} = a$ $x_{i+2} = d$
设计变量个数	2	1	1	1	1	2
编号6约 束条件	$g_{j+1} = M_{Ax}(1)$ $g_{j+2} = 1_{G_10}/$ $g_{j+3} = N_{AA2}$ $g_{j+4} = (a - 2a)$ $g_{j+5} = a/d - a$	N_{AA2} , N_B $r_{G1min} - [\lambda]_{G1}$ $/\varphi \cdot A_{G1} - [\sigma]_{1}$ $d)/d - 50\sqrt{24}$ $80\sqrt{2400}/\sigma_{\bullet}$	$B_{2} , Ncc_{2} , \leq 0$ $M \leq 0$ $00/\sigma_{s} - 0.1\lambda \leq \leq 0$, ואסעען)/A ≤0	lσı,- (σ]II≪0	

1992年

.

4

.

.

.

续表

约束条件数	3	3	3	3	3	5
目标函数	$F_1(\mathbf{X}) =$	Ag1·lg1·ρ, ρ)	为比重,以下同			
* 我底法行时	。截面偏县店	山宮甸広县「丁4 ウ	· щ.			

程序运行时,截面编号值由控制变量 IT4 定出;

** h1、8值由条件 Ix = Iy 定出;

*** d 由条件 I x = I y 定出。

2.2 底架上梁

编号・	1 .	2
截面型式		b ₁ d ₂
设计变量	$x_{i_{+}1} = \delta_1, \ x_{i_{+}2} = \delta_2, \ x_{i_{+}3} = b, \ x_{i_{+}4} = h$	
设计变量数	4	4
编号2约束条件	$g_{J+1} = \frac{M_x}{W_x} + \frac{M_y}{W_y} + \sigma_{\varphi} + \sigma_{\varphi} + \frac{N}{A_{SL}} - [\sigma]_{II} \leq 0$ $g_{J+2} = \tau_p + \tau_k + \tau_{\varphi} - [\tau]_{II} \leq 0$ $g_{J+3} = \sigma_J - 1.4[\sigma]_{II} \leq 0$ $g_{J+4} = \sqrt{\sigma_1^2 + \sigma_j^2 - \sigma_1\sigma_J + 3\tau_1^2 - 1.1[\sigma]_{II} \leq 0}$ $g_{J+5} = f_{\varphi} - [f]_{\varphi} \leq 0$ $g_{J+6} = f_{H-} - [f]_{H} \leq 0$ $g_{J+7} = \frac{h + 2\delta_1}{b - 2b_1} - 3 \leq 0$ $g_{J+8} = \frac{I_1}{b - 2b_1} - 50 \leq 0$ $g_{J+9} = \frac{b - \delta_2 - 2b_1}{\delta_1} - m_1 \left(= \sqrt{\frac{2400}{\sigma_s}} \right) \leq 0$	•
约束条件数	9	10
目标函数	$F_2(X) = A_{SL} \cdot l \cdot \rho$, A_{SL} 为截面积, l 梁长	

• 程序运行时,其值由控制变量 IT2 定出。

81

• 程序运行时,编号值由 IT3 定出;

** d 由结构条件定出;

*** 下梁未列出内容同上梁。

2.4 底架斜撑

底架斜撑和塔身杆均为轴心压杆,其截面型式取为塔身撑杆中的2,3,4,5,6五 种型式,由控制变量 IT5确定。其余和塔身撑杆相同,略。

在各组成部分的设计模型确定后,则底架总成完整的优化设计数学模型可表为:

$$\min F(X) = \sum_{i=1}^{4} w_i F_i(X)$$

$$D = \{X \mid g_m(X) \le 0, \ m = 1, \ 2, \ \dots, \ L\}$$

$$X = [X_D, \ X_C]^T$$

$$X_D = [X_1, \ X_2, \ \dots, \ X_p)^T \in R^D$$

$$X_C = [X_{p+1}, \ X_{p+2}, \ \dots, \ X_n]^T \in R^C$$

$$R^n = R^D \times R^C = \{(X^D \cdot X^C); \ X^D \in R^D, \ X_C \in R^C\}$$
(6)

其中 p 为离散变量数, n 为设计变量个数, L 为约束条件个数, w_i 为权因子。当某一组件参与优化时, $w_i = 1$, 否则为零。

3 程序的N-S图

13

塔式起重机行走式底架结构总成计算机辅助分析和设计程序的N-S图如图 5 所示。目前 程序已含 # 型和十字型底架结构,水母式和X型暂缺,待扩充。 整个程序完全采用模块结构且 具有较强的人机对话功能。由于优化设计方法——混合离散变量 *M DCP* 组合型算法模块已 有专著讨论⁵⁴¹,且受篇幅的限制,以下仅讨论设计约束函数过程模块的N-S图。

底架总成计算机辅助设计外载*M'y*, *M'y*, *Q'y*, *N'* 和 *M'k*由塔身设计定出。根据吊重的大小和幅度, 塔身、吊臂、风向、行走轨道的不同方位和取向可有七种组合, 其值由程序依控制变量IT1 的取值从外存数据文件中读入。又 # 型行走式底架结构, 从整体布置看, 下梁可以和行走轨道平行(IT6=1), 也可垂直(IT6=2); 压重 q, 的支点可设在上梁上(IT7=1), 也可在下梁上(IT7=2); 上、下梁的连结方式通常采用搁置式(IT8=

A

 1),也可取上梁端面和下梁侧面连结方式(IT8=2),且两者均可用斜撑加固(IT5≥0), 也可不用(IT5<0);上、下梁翼缘板、腹板之厚度可相等(IT9=1),也可不同(IT9=
 2)。综合上述诸情况之后,#型底架总成设计约束函数过程模块的 N-S 图如图 6 所示。

开始					
输入问题控制变量 ITYF	YE 值				
ITYPE = 1	ITYPE = 2	1	ITYPE = 3	ITYPE	= 4
非 型	十字型		水母式	X #	<u> 1</u>
THEN	(九	化设计			ELSE
DO.	<i>A</i> = <i>D</i> ^{<i>i</i>}		D°	<i>OA</i> = <i>'A'</i>	
根据 ITYPE 之值,从外	存数据文件中读入相应	问题的]各控制变量值,并	通过人机对话方式	作修改
根据各控制变量值,从外	·存型材数据库中读入有	关型标	截面特性表和各类	结构参数	
THEN	DC)A=']	י ר		ELSE
调用 MDCP 优化设计方 构作优化设计	法模块,对相应底架结	订 ち	明用CONST约束函 e,对相应底架结构	数子块和FUNC目 作分析	标函数子
输出优化设计或结构分析	·结果				
THEN		继续			ELSE
返回升			结	束	

图5 塔式起重机行走式底架结构总成计算辅助分析和设计程序的N-S图

入口				
I = 0				
根据1T4的值确定	掌杆设计变量			
IT4 = 1	IT4 = 2, 3, 4, 5		I T 4 = 6	IT4 = 0
$D_{G_1} = X(I+1)$ $T_{G_1} = X(I+2)$ I = I+2	$\begin{vmatrix} NoG_1 = INT(X(I+1) + 0.2) \\ I = I + 1 \end{vmatrix}$	2)	$A_{G_1} = X(I+1)$ $D_{G_1} = X(I+2)$ I = I+2	空
THEN	IT	4≠0		ELSE
调用MORSG,计算	算撑杆截面特性值	从外	存数据文件读入撑杆截	面特性值
根据 ST2 的值确定	上梁设计变量			
IT2 = 1, 2				lT2 = 0

王炳乐等: 塔式起重机行走式底架结构总成的计算机辅助分析和设计 83 第1期

DT1S = X(I+1), DT2S = X(I+2)	2), BS = X	(I+3), HS = X(I+4),	容
I = I + 4	•		
THEN	IT:	2≠0	ELSE
调用MORS1或MORS2,计算上梁截百	面特性值	从外存数 据 文件读入上梁 截	
根据IT2、IT3、IT9的值确定下梁设	计变量		
IT2≠0, IT3=1, 2, 3, IT9=1	IT3 = 1	1, 2, 3, $IT9 = 2$	I T 3 = 0
DT1X = DT1S	DT1X	I = X(I+1)	
$DT_2X = DT_2S$	DT ₂ X	I = X(I + 2)	
BX = X(I+1)	BX =	X(I+3)	空
HX = X(I+2)	HX =	X(I+4)	
I = I + 2	I = I +	4	
	ITa	3+0	
THEN			ELSE
调用MORS2或MORS3,计算下梁截面	面特性值	从外存数据文件读入下梁截	面特性值
根据 IT5 的值确定底架斜撑的设计变量			
IT5 = 1, 2, 3, 4	IT5 =	5	IT5 ≪ 0
NOG2 = INT(X(I+1) + 0.2) I = I + 1	AG2 = X $I = I + 2$	f(I+1), DG2 = X(I+2)	空
THEN	ITE	5≤0	FLSF
	\rightarrow	 	
THEN	ELSE	调用MORSG计算斜撑的载	面特性值
空 从外存读入斜撑	載面特性值		шигш
调用FORCUT力学模型模块,根据IT	`1、IT5、I'	Γ6、IT7、IT8的值求解方程(4	(5)
J = 0		. :	
当 IT4 → 0 时	<u> </u>		
调用CONSG轴心压杆约束	函数子块,	计算撑杆约束函数值	
IT4 = 1~5	······	IT4 = 6	
J = J + 3		J = J + 5	·
当IT2 年 0			
调用CONSL底架主梁约束	函数子块计	算上梁约束 函数 值	·····
IT2 = 1		IT2=2	······································
J = J + 9	<u> </u>	J = J + 10	

续图

3 .

•

.

当IT3	i≠0		
	调用CONSL底架主梁约束函数子	块计算下梁约 束函数值	
	J = J + 9		
当IT5	5>0		
	调用CONSG轴心压杆约束函数子	块计算斜撑函数值	
	IT5=1~4	IT5 = 5	
]-	I = I + 3	J = J + 5	

图 6 #型行走式底架结构总成约束函数过程子块程序的N-S图

4 算例和简单结语

从程序的 N-S 图看,程序通过一组控制变量的不同 取 值,几乎可处理底架结构所有可 能的情况。这不仅可满足用户的多种要求,且便于设计人员探讨底结构的设计机理。随着程 序的调试和扩充,我们曾为某厂 QT-80 塔机上梁为单 箱 形、下梁为双箱 形,搁置式无斜 撑,压重支点设在上梁上,下梁和轨道平行的 # 型底架结构总成作了优化设计(表1方案1); 后又为该厂 QT-80 塔机上梁为单箱形或工字形、下梁为单箱形,搁置式有斜撑加固,压重 支点在上梁上,下梁和轨道垂直的 # 型底架结构总成提供了优化设计方案(表1方案2); 近期,我们又用此程序为某厂设计了 QT-80A 塔机十字型底架结构总成(表2)。

组·	件名称	撑杆		十字	梁		拉	杆
截面如	型式编号	2		2			1	
设计	名称	$N_{OG1}(x_1)$	$\delta_1(x_2)$	$\delta_2(x_3)$	$b(x_4)$	h(x5)	$D(x_6)$	t(x7)
变量	X [•] 值	7([180×68)	1.8	1.0	28.0	34.4	8.0	1.0
目标的	函数 (t)	0.955		2.5	56		0.	345

表 2 十字型底架总成优化设计结果

• 总成重3.857t。

通过以上实际设计和一定的计算机模拟实践,我们有以下体会:

1) 国内塔机行走式底架结构总成多数偏大,原因之一是力学模型过于粗草。如前述, 行走式底架总成通常都是高次超静定空间桁梁混合结构,且有很多随机和可变因素,精确求 解十分困难。因此,工程中为计算方便简单,作了若干假设,而其中的一些是欠妥的。例如 在求撑杆轴力时,忽略底架主梁的弹性变形,或者 # 型底架尽管有斜撑加固,但计算时也不 考虑,又如忽略部分外载(如扭矩M⁴和车轮侧向力P₄等)和主梁内力,只计垂直面弯矩等, 均与实际差异较大。

			★1	QT-80堵	机并塑底势	昆原始方案	和优化设计	十结果				
/ 咳	名称	撑杆		거	\$ K			۴	涂		₩ ₩	
献 固 型	原方案	7	I	61				61				
	方案 1			61				21	-		Ι	
式编号	方 案 2	4		61							1	
登 步计 守	名称	$Nog_1(x_{i+1})$	$\delta_1(x_{i_+1})$	$\delta_2(x_{i+2})$	$b(x_{i+3})$	$h(x_{i+4})$	ðı	Å2	$b(x_{i_{+}1})$	$h(x_{i+2})$	$Nog_{2}(x_{i+1}$	
因 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	×	•	1.4	1.2	40.0	52.2	1.4	1.2	30.0	37.2	:	
	×:	٠	1.6	0.8	35.0	56	1.6	0.8	25.0	40.0	:	
	X:	6([160×65)	1.8	0.8	26.0	47.0	1.8	8 •0	40.0	49.0	3([140×58	~
「「「」	名茶	91+3	g ₃₊ 1	g)+2	g ₃₊ 4	91+5	g ₃₊ 1	g)+2	g1+3	g ₁₊₄	91+3	1
H K S	G(X°)		- 128.9	- 756.0	- 609 -	- 0,315	- 217.8	- 953.4	- 801.2	- 0.481		-
i 1: ++	G(X;)		- 19.3	- 656.4	- 553.7	- 0.221	- 21.6	- 743.1	- 618.4	- 0.235	Ι	
3 ⊠ ¥	G(X;)	- 37.6	- 8.1	- 655.4	- 531.9	- 0.139	- 9.3	- 578.1	- 170.9	- 0.175	- 567.1	
目标函数	F(X°)			3.]	129			3.	787			1
	$F(X_1)$			2.(358	_		÷.	147		1	
(£)	$F(X_{\frac{1}{2}})$	0.935		2.	226	_		2.	430		0.268	
目标函数	方案 1			15,	03			16,	.90			
下降率(%)	方 案 2	- 23,16		28.	86			35,	.83			
• 塔身 排杆 采用	原设计, D=14,	cm, t=1cm, • •	•原设计,方	案 1 无斜排)	•••底架总	1成原重7.675	t, 方業1重6	•565t,方兼:	2 重5.859t (7	F包括塔身第-	一节架。以下同	~

第1期

3

85

2)理论分析和计算实践表明,对于 #型底架,整体布置如无特殊要求, 宜采用下梁垂 直行走轨道的方式,上、下梁取上梁端面和下梁侧面相连结方式重量最轻,搁置式 简单方 便,两种情况均宜用斜撑加固,上梁宜用工字形或单箱形,下梁宜用单箱形。

3)就上述四种底架,#型和 X 型用得较多,但从发展趋势看,由于十字型底架具有构造简单、受力合理,设计方便,且重量较轻等优点,有可能逐步取代其余三种。

4)理论分析和计算机模拟表明,无论是何种型式的底架总成,撑杆轴力对撑杆截面积 A_{G1}均较敏感。当 A_{G1}加大时,撑杆轴力增大,而撑杆轴力的增大又能较大幅度地使主梁内 力减小。这一现象表明,撑杆重量较小的增加可促成底架主梁重量较多的减小,从而使底架 总成较轻。

5)通常,塔身撑杆上支承座是在塔机首次安装时配焊的,其配焊顺序有两种,一是先 在主梁上放上压重,然后配焊支承座,另一种是先配焊支承座,装上撑杆,然后加压重。两种 做法,力学模型不同,效果也不同。后者,由于压重的部分重量可通过塔身第一节架、撑 杆、主梁、车轮直接传入轨道,故可改善底架主梁的受力情况,从而有利于减小底架总成的 重量。

参考文献

- 1 起重机设计规范。GB3811-83
- 2 美国 J.M 盖尔。杆系结构分析。水利电力出版社, 1983
- 3 同济大学主编。钢结构。建工出版社, 1985
- 4 陈立周,关于约束非线性混合离散变量优化设计方法及软件包 MOD 的研究。科技研究报告。 北京科技大学,1987
- 5 QT-80 塔机底架结构优化设计的研究报告。重庆建院、广西建机厂, 1987, 1988
- 6 QT-80A塔机整机优化设计研究报告。重庆建工学院、广西建机厂, 1989
- 7 喻志刚、王炳乐、宋立权、周首光。塔式起重机金属结构计算机辅助设计系统。重庆建筑工程 学院学报,1990,12(2):118

(编辑:刘家凯)

COMPUTER-AIDED ANALYSIS AND DESIGN FOR THE BASE STRUCTURE OF A MOVABLE TOWER CRANE

Wang Bingle Zhou Shouguang Song Liquan Yu Zhigang (Dept. of Mechanical and Electrical Engineering)

ABSTRACT This paper is one of the achievements of the research item for computer-aided design of tower crane's steel structure. In the paper, taking the well-base structure as an example, first the method establishing the mechanical model is explained for the base structure of a movable tower crane. Then the math model of its optimal design and the N-S figures for the computer program is described and calculated using discrete optimal technology. Finally the problems related to the design for the base structure of a movable tower crane are briefly illustrated.

KEY WORDS tower crane, base structure, computer-aided design