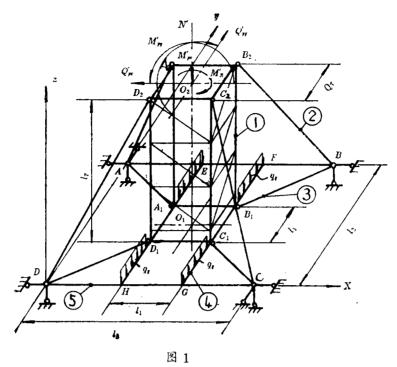
第14卷第 1 期 JOURNAL OF CHONGQING INSTITUTE OF Vol.14 No.1 1992年 3月 ARCHITECTURE AND ENGINEERING March 1992

塔式起重机行走式底架结构总成 的计算机辅助分析和设计

王炳乐 周首光 宋立权 喻志刚

(机电系)

情 要 本文是"塔式起重机金属结构计算机辅助设计"科研课题其中的一个成果[5,8,7]。 文 中以井型底架结构为例,首先说明了塔式起重机行走式底架结构总成力学模型的建立方法; 随后给出了它们优化设计数学模型和计算机程序的N·S图,并应用离散优化技术作了实例计算; 最后就行走式底架结构总成设计中有关的问题作了简要说明。


关键词 塔式起重机,底架结构,金属结构,计算机辅助设计

塔式起重机行走式底架结构总成,工程中常见的型式有: #型、十字型、 X型和水母式等多种。它们的共同特点是均为高次超静定空间桁梁混合结构,其力学模型的简化和求解,优化设计数学模型的建立和求解方法有许多共同之处。本文试以 # 型行走式底架结构总成为例,首先说明了这类结构总成力学模型的建立方法; 随后给出了它们统一的优化设计数学模型和计算机程序的N-S图,并应用离散优化技术作了实例计算; 最后就行走式底架结构总成设计中有关的问题作了简要说明。

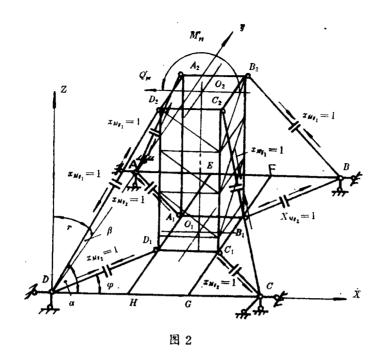
1 力学模型[2]

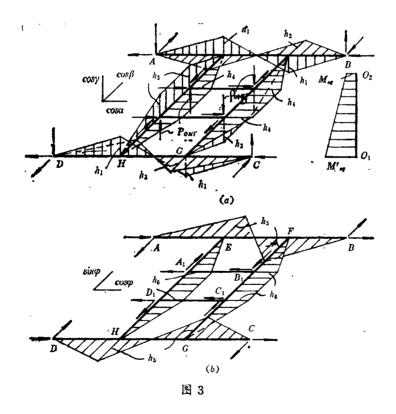
塔式起重机行走式底架结构总成包括塔身第一节架、塔身撑杆和底架主梁等组成部分。 其#型行走式底架结构总成的计算简图如图 1 所示。 外载荷包括作用在撑杆上支承面 A_2B_2 C_2D_2 上的弯矩 $M_{\rho x}$ 、 $M_{\rho y}$,剪力 $Q_{\rho x}$ 、 $Q_{\rho y}$,轴向力N' 和扭矩 M_{R} , 作用 在底架上梁上的压重 Q_y 和各部分自重,以及塔机行走时行走轨道作用于车轮的侧向力 P_s 。 为了便于利用结构的对称性从而简化计算,特将上述外载荷分为① N' 和 Q_y ,② $M_{\rho y}$ 和 $Q_{\rho x}$;③ $M_{\rho x}$ 和 $Q_{\rho y}$;

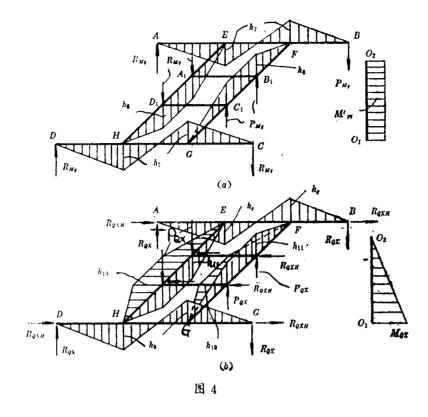
本文1989年9月19日收到。

①第一节架;②塔身撑杆;③斜撑;①上梁;⑤下梁

④ M_h 和⑤ P_s 五组,先分别求出各组外载引起的撑杆轴力和主梁有关部位的内力,然后叠加即可求得总轴力和总内力。自重单独计入,即自重对结构内力的影响不计撑杆的作用。为节省篇幅,以下以外载 M_h ,和 Q_h 。组说明其求解过程。


1.1 建立力法基本方程


由于只考虑 M'_{ρ_y} 和 Q'_{ρ_x} ,故由结构的对称性易知,总成的支座反力是静定的,并且塔身的四根撑杆和底架的四根斜撑,它们的轴力,其大小各自相等,方向两两相反,故多余未知力只有二个,切断四撑杆和四斜撑,则得该结构在承受外载 M'_{ρ_y} 和 Q'_{ρ_x} 时的基本结构(图2)。分别令 $X_{My1}=1$ 和 $X_{My2}=1$,绘出对应的弯矩图(图 3 ,a,b),再将 M'_{ρ_y} 和 Q'_{ρ_x} 单独作用于基本结构,绘出对应的弯矩图(图 4 ,a,b),


图 3, 4中

$$\begin{split} S_2 &= 0.5(l_1 - l_2), \ P_{oMy} = 0.5 M_{oy}/l_2, \ M_{Jy}' = 2a_T \cos\gamma, \ M_{oy} = M_{oy}' + 4l_T \cos\alpha, \\ h_1 &= S_2 \cdot \cos\gamma, \ h_2 = S_2 \cdot \cos\beta, \ h_3 = S_2 \cdot P_{oMy}, \ h_4 = S_2 \cdot \cos\alpha, \ h_5 = S_2 \cdot \sin\varphi, \\ h_8 &= S_2 \cdot \cos\varphi \\ P_{My} &= 0.5 M_{py}'/l_2, \ R_{My} = 0.5 M_{py}'/l_1, \ h_7 = S_2 \cdot R_{My}, \ h_8 = S_2 \cdot P_{My} \\ M_{Qx} &= l_T \cdot Q_{px}', \ P_{Qx} = 0.5 M_{Qx}/l_2, \ R_{QxH} = 0.25 Q_{px}', \ R_{Qx} = 0.5 M_{Qx}/l_1, \\ h_9 &= S_2 \cdot R_{Qx}, \ h_{10} = S_2 \cdot R_{QxH}, \ h_{11} = S_2 \cdot P_{Qx} \end{split}$$

[·

利用图解积分法,易得该结构在承受外载 M_{py} 和 Q_{px} 时的力法基本方程为:

 $F_{My} = (f_{ij})_{2,2}$.

$$F_{My} \cdot X_{My} = -D_{My} \tag{1}$$

式中:

FMy---柔度矩阵

$$\begin{split} f_{11} &= \frac{1}{EI_T} \cdot y_3(l_T, \ M'_{oy}, \ M_{oy}, \ M'_{oy}, M_{oy}) \\ &+ \frac{4}{EI_{Vx}} \cdot [y_1(S_2, \ h_1) + y_1(0.5l_2, \ h_1)] \\ &+ \frac{4}{EI_{Hx}} \cdot [y_1(S_2, \ h_2) + y_1(0.5l_2, \ h_2)] \\ &+ \frac{2}{EI_{Vs}} \cdot [2y_1(S_2, \ h_3) + l_2 \ h_3^2] \\ &+ \frac{2}{EI_{Hs}} \cdot [2y_1(S_2, \ h_4) + l_2 \ h_4^2] \\ &+ \frac{l_{\theta 1}}{EA_{G1}} \\ f_{22} &= \frac{4}{EI_{Hx}} \cdot [y_1(S_2, \ h_5) + y_1(0.5l_2, \ h_5)] \end{split}$$

.4

$$+ \frac{2}{EI_{Hs}} \cdot [2y_{1}(S_{2}, h_{6}) + l_{2}h_{6}^{2}]$$

$$+ \frac{l_{g2}}{EA_{G_{2}}}$$

$$f_{12} = \frac{4}{EI_{Hs}} \cdot [y_{2}(S_{2}, h_{2}, -h_{5}) + y_{2}(0.5l_{2}, h_{2}, -h_{5})]$$

$$+ \frac{2}{EI_{Hs}} \cdot [2y_{2}(S_{2}, h_{4}, h_{6}) + l_{2}h_{4}h_{6}]$$

$$= f_{21}$$

X_{My}——多余未知力列向量

$$X_{My} = [M_{My1}, X_{My2}]^T$$

Dму---载荷位移列向量

$$D_{My} = [D_{My1}, D_{My2}]^{T}$$

$$D_{My1} = \frac{1}{EI_{T}} \cdot y_{3}(l_{T}, M'_{oy}, M_{oy}, -M'_{py}, -M'_{py}, -M'_{py} - M_{Qx})$$

$$+ \frac{4}{EI_{Yx}} \cdot [y_{2}(S_{2}, h_{1}, -h_{7} - h_{9}) + y_{2}(0.5l_{2}, h_{1}, -h_{7} - h_{9})]$$

$$+ \frac{2}{EI_{Ys}} \cdot [2y_{2}(S_{2}, h_{3}, -h_{8} - h_{11}) - l_{2}h_{3}(h_{8} + h_{11})]$$

$$+ \frac{2}{EI_{Hs}} \cdot [2y_{2}(S_{2}, h_{4}, -h_{10}) - l_{2}h_{4}h_{10}]$$

$$D_{My2} = \frac{2}{EI_{Hs}} \cdot [2y_2(S_2, h_6, -h_{10}) - l_2h_6h_{10}]$$

以上诸式中, I_T 为塔身截面惯性矩, I_{Vz} 、 I_{Hz} 和 I_{Fz} 、 I_{Hz} 分别为下梁和上梁截面对垂直水平轴的惯性矩, l_T 、 l_{g1} 、 l_{g2} 分别为塔身第一节架、撑杆、斜撑的长度, A_{G1} 、 A_{G2} 为撑杆和斜撑的截面积,E为弹性模量,其余见图 1 至 6。另外:

$$S_{2} = 0.5(l_{1} - l_{2})$$

$$y_{1}(S, h) = \frac{1}{3}Sh^{2}$$

$$y_{2}(S, h_{1}, h_{2}) = \frac{1}{3}Sh_{1}h_{2}$$

$$y_{3}(S, h_{3}, h_{4}, h_{5}, h_{6}) = \frac{1}{6}S[z(h_{3}h_{5} + h_{4}h_{6}) + h_{3}h_{6} + h_{4}h_{5}]$$

1.2 解力法基本方程,求X_{My}

$$X_{My} = -F_{My}^{-1} \cdot D_{My} \tag{2}$$

1.3 计算有关部位的内力

$$A_{My} = A_{Myp} + T_{My} \cdot X_{My} \tag{3}$$

如要计算的内力为: 下梁AEFB截面 A 的垂向剪力 Q_A ,截面E两侧的垂向剪力 Q_{ELX} 、 Q_{ERX} ,轴向力 N_{ELX} 、 N_{ERX} ,垂面弯矩 M_{EIT} 、 M_{ERY} 和水平弯矩 M_{EIH} 、 M_{ERH} ,以及上梁

 EA_1D_1H 截面E的垂向 剪 力 Q_E ,截面 A_1 两侧的垂向剪力 Q_{AII} 、 Q_{AIR} , 轴向 力 N_{AII} 、 N_{AIR} , 垂面弯矩 M_{AIIV} 、 M_{AIRV} , 水平弯矩 M_{AIIH} 、 M_{AIRH} , 即

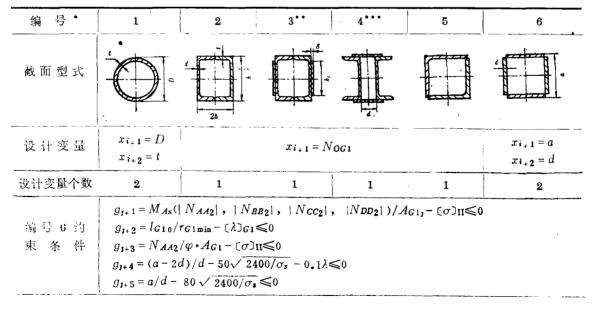
$$A_{My} = [Q_A, Q_{ELX}, Q_{ERX}, N_{ELX}, N_{ERX}, M_{ELV}, M_{ERV}, M_{ELH}, M_{ERH}, Q_E,$$

$$Q_{AIL}, Q_{AIR}, N_{AIL}, N_{AIR}, M_{AILV}, M_{AIRV}, M_{AILH}, M_{AIRH}]^T$$

则:

$$A_{Myp} = \begin{bmatrix} R_{My}, & R_{My}, & R_{My} - P_{My}, & 0, & 0, & -h_7, & -h_7, & 0, & 0, & -P_{My}, & -P_{My}, \\ 0, & 0, & h_8, & h_8, & 0, & 0 \end{bmatrix}^T \\ + \begin{bmatrix} R_{QX}, & R_{QX}, & R_{QX} - P_{QX}, & -R_{QXH}, & 0, & -h_9, & -h_9, & 0, & 0, & P_{QX}, \\ P_{QX}, & 0, & 0, & 0, & -h_{11}, & -h_{11}, & h_{10}, & h_{10} \end{bmatrix}^T \\ T_{My} = \begin{bmatrix} -\cos \gamma & -\cos \gamma & P_{oMy} - \cos \gamma & \cos \alpha & 0 & h_1 & h_1 & -h_2 & -h_2 \\ 0 & 0 & -\cos \varphi & 0 & 0 & 0 & h_5 & h_5 \end{bmatrix}^T \\ - P_{oMy} & -P_{oMy} & 0 & \cos \beta & 0 & h_3, & h_3 & -h_4 & -h_4 \end{bmatrix}^T \\ 0 & 0 & -\sin \varphi & 0 & 0 & -h_6 & -h_6 \end{bmatrix}^T$$

在各组外载对应的未知力和内力求到后,则总未知力和总内力可用下式求出:

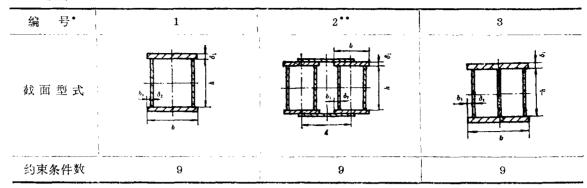

$$X = X_{NQ} + X_{My} + X_{MX} + X_{MR} + X_{PS}$$
 (4)

$$A = A_{NQ} + A_{My} + A_{MX} + A_{MR} + A_{PS}$$
 (5)

2 优化设计数学模型

由于塔身第一节架的设计参数是由塔身设计确定的,故 # 型底架结构总成设计尚须确定的参数有: 塔身撑杆的截面型式和有关尺寸,底架主梁,包括上梁和下梁的截面型式和有关尺寸,底架斜撑的截面型式和有关尺寸。这三部分的设计变量名称和个数视其 截 面 型 式而异,设计指标以重量最轻为追求目标,设计约束主要出自强 度 条 件、 刚度条件和稳定性条件 [1] 7:3]。为清晰、简单起见,以下以列表方式给出这些内容。

2.1 塔身撑杆


续表						-
约束条件数	3	3	3	3	3	5
目标函数	$F_1(X) =$	Ag1 · lg1 · ρ, ρ)	为比重,以下 同	j	·	

- * 程序运行时,截面编号值由控制变量 IT4 定出;
- ** h₁、8值由条件 I_x= I_y 定出;
- ••• d 由条件 Ix=Iy定出。

2.2 底架上梁

编号•	1	2
截面型式	6	b ₁ b ₂
设计变量	$x_{i+1} = \delta_1, \ x_{i+2} = \delta_2, \ x_{i+3} = b, \ x_{i+4} = h$	
设计变量数	4	4
编号2约束条件	$g_{1+1} = \frac{M_x}{W_x} + \frac{M_y}{W_y} + \sigma_{\phi} + \sigma_{\phi} + \frac{N}{AsL} - [\sigma]_{II} \le 0$ $g_{1+2} = \tau_p + \tau_k + \tau_{\phi} - [\tau]_{II} \le 0$ $g_{1+3} = \sigma_1 - 1.4[\sigma]_{I} \le 0$ $g_{1+4} = \sqrt{\sigma_1^2 + \sigma_1^2 - \sigma_1 \sigma_1 + 3\tau_1^2 - 1.1[\sigma]_{II} \le 0}$ $g_{1+5} = f_v - [f]_v \le 0$ $g_{1+6} = f_H - [f]_H \le 0$ $g_{1+7} = \frac{h + 2\delta_1}{b - 2b_1} - 3 \le 0$ $g_{1+8} = \frac{l_1}{b - 2b_1} - 50 \le 0$ $g_{1+9} = \frac{b - \delta_2 - 2b_1}{\delta_1} - m_1 \left(= \sqrt{\frac{2400}{\sigma_s}} \right) \le 0$ $g_{1+10} = \frac{h}{\delta_2} - m_2 \left(= 80\sqrt{\frac{2400}{\sigma_s}} \right) \le 0$	•
约束条件数	9	10
目标函数	F ₂ (X) = Ast·l·ρ, Ast 为截面积, l 梁长	

[·] 程序运行时,其值由控制变量 IT2 定出。

- 程序运行时,编号值由 IT3 定出;
- ** d 由结构条件定出;
- *** 下架未列出内容同上梁。

2.4 底架斜撑

底架斜撑和塔身杆均为轴心压杆,其截面型式取为塔身撑杆中的 2, 3, 4, 5, 6 五种型式,由控制变量 IT5确定。其余和塔身撑杆相同,略。

在各组成部分的设计模型确定后,则底架总成完整的优化设计数学模型可表为:

$$\min F(X) = \sum_{i=1}^{4} w_{i} F_{i}(X)$$

$$D = \{X \mid g_{m}(X) \leq 0, \ m = 1, 2, \dots, L\}$$

$$X = [X_{D}, X_{C}]^{T}$$

$$X_{D} = [X_{1}, X_{2}, \dots, X_{p})^{T} \in R^{D}$$

$$X_{C} = [X_{p+1}, X_{p+2}, \dots, X_{n}]^{T} \in R^{C}$$

$$R^{n} = R^{D} \times R^{C} = \{(X^{D} \cdot X^{C}), X^{D} \in R^{D}, X_{C} \in R^{C}\}$$
(6)

其中 p 为离散变量数,n 为设计变量个数,L 为约束条件个数, w_i 为权因子。当某一组件参与优化时, $w_i=1$,否则为零。

3 程序的N-S图

塔式起重机行走式底架结构总成计算机辅助分析和设计程序的N-S图如图 5 所示。目前程序已含 # 型和十字型底架结构,水母式和X型暂缺,待扩充。 整个程序完全采用模块结构且具有较强的人机对话功能。 由于优化设计方法——混合离散变量 MDCP 组合型算法模块已有专著讨论 $^{-4}$,且受篇幅的限制,以下仅讨论设计约束函数过程模块的N-S图。

底架总成计算机辅助设计外载 M'_{px} 、 M'_{py} , Q'_{px} 、 Q'_{py} ,N' 和 M'_{R} 由塔身设计定出。根据吊重的大小和幅度,塔身、吊臂、风向、行走轨道的不同方位和取向可有七种组合,其值由程序依控制变量IT1 的取值从外存数据文件中读入。又 # 型行走式底架结构,从整体布置看,下梁可以和行走轨道平行(IT6=1),也可垂直(IT6=2); 压重 q_y 的支点可设在上梁上(IT7=1),也可在下梁上(IT7=2);上、下梁的连结方式通常采用搁置式(IT8=1)

1),也可取上梁端面和下梁侧面连结方式 (IT8=2), 且两者均可用斜撑加固 (IT5 \geqslant 0),也可不用 (IT5 \leqslant 0),上、下梁翼缘板、腹板之厚度可相等 (IT9=1),也可不同 (IT9=2)。综合上述诸情况之后,# 型底架总成设计约束函数过程模块的 N-S 图如图 6 所示。

开始				
输入问题控制变量 ITYI	PE 值			
ITYPE = 1	ITYPE = 2	1	ITYPE = 3	ITYPE = 4
非 型	十字型		水母式	X 型
THEN	,	优化设计		ELSE
DO	A = D'		DO	A = 'A'
根据 ITYPE 之值,从夕	· 存数据文件中读入相	立问题的	各控制变量值, 并通	过人机对话方式作修改
根据各控制变量值,从外	存型材数据库中读入	有关型材	截面特性表和各类组	
THEN	D	OA = 'D),	ELSE
调用 MDCP 优化设计方 构作优化设计	法模块,对相应底架约		用CONST约束函数,对相应底架结构作	子块和FUNC目标函数子 分析
输出优化设计或结构分析	f结 果			
THEN		继续		ELSE
返回チ	干始		结	 束

图 5 塔式起重机行走式底架结构总成计算辅助分析和设计程序的N-S 图

入口				
I = 0				
根据 IT4 的值确定	撑杆设计变量			
IT4 = 1	IT4 = 2, 3, 4, 5		IT4=6	IT4 = 0
$D_{G1} = X(I+1)$ $T_{G1} = X(I+2)$ $I = I+2$	$ NoG_1 = INT(X(I+1) + I = I+1 $	0.2)	$A_{G1} = X(I+1)$ $D_{G1} = X(I+2)$ $I = I+2$	空
THEN		IT4≠0		ELSE
调用MORSG, 计算	章撑杆截面特性值	从夕	卜存数据文件读入撑杆截	面特性值
根据 ST2 的值确定	上梁设计变量			
IT2 = 1, 2				lT2=0

续图

DT1S = X(I+1), DT2S = X(I+2) I = I+4	BS = X	(I+3), HS = X(I+4),	空.
THEN	IT:	2≠0	ELS
调用MORS1或MORS2, 计算上梁截面	特性值	从外存数据文件读入上梁截	面特性值
根据 IT2、IT3、IT9 的值确定下梁设	计变量		
$IT2 \neq 0$, $IT3 = 1$, 2, 3, $IT9 = 1$	I T 3 = 1	, 2, 3, IT9=2	IT3=0
DT1X = DT1S	DT1X	=X(I+1)	
DT2X = DT2S	DT_2X	=X(I+2)	
BX = X(I+1)	BX = 1	X(I+3)	空
HX = X(I+2)	HX=	X(I+4)	
I = I + 2	I = I +	4	
THEN	I T 3	+ 0	ELS
调用MORS2或MORS3, 计算下梁截面	i特性值	从外存数据文件读入下梁截	
根据 IT5 的值确定底架斜撑的设计变量	<u> </u>		
IT5=1, 2, 3, 4	IT5 = 5	5	IT5≪0
NOG2 = INT(X(I+1) + 0.2)	AG2 = X	(I+1), DG2 = X(I+2)	٠
I = I + 1	I = I + 2	·	空
	IT5	<0	
THEN			ELS
THEN IT5<0	ELSE	_	
		调用MORSG计算斜撑的截	面特性值
空 从外存读入斜撑都			
调用FORCUT力学模型模块,根据IT	1, 115, 11	[6、117、118的值求解方程(4 ————————————————————————————————————	(5)
<i>J</i> = 0			
当 IT4 キ 0 时			
调用CONSG轴心压杆约束	函数子块,	计算撑杆约束函数值	
I T 4 = 1∼5	<u></u>	IT4=6	
J = J + 3		J = J + 5	
当IT2≠0		The second secon	
调用CONSL底架主梁约束	函数子块计	算上梁约束函数值	
IT2=1	··	IT2 = 2	· · · · · · · · · · · · · · · · · · ·
		J = J + 10	

续图

出口

 当IT3キ0

 週用CONSL底架主梁约束函数子块计算下梁约束函数值

 J=J+9

 当IT5>0

 週用CONSG轴心压杆约束函数子块计算斜撑函数值

 IT5=1~4
 IT5=5

 J=J+3
 J=J+5

图 6 #型行走式底架结构总成约束函数过程子块程序的N-S图

4 算例和简单结语

从程序的 N-S 图看,程序通过一组控制变量的不同取值,几乎可处理底架结构所有可能的情况。这不仅可满足用户的多种要求,且便于设计人员探讨底结构的设计机理。随着程序的调试和扩充,我们曾为某厂 QT-80 塔机上梁为单 箱 形、下梁为双箱 形,搁置式无斜撑,压重支点设在上梁上,下梁和轨道平行的 # 型底架结构总成作了优化设计(表1方案1);后又为该厂 QT-80 塔机上梁为单箱形或工字形、下梁为单箱形,搁置式有斜撑加固,压重支点在上梁上,下梁和轨道垂直的 # 型底架结构总成提供了优化设计方案(表 1 方案 2);近期,我们又用此程序为某厂设计了 QT-80A 塔机十字型底架结构总成(表 2)。

组件	-名称	撑杆		十字	·····································	-	拉	杆
截面型	式编号	. 2		2			1	
设计:	名 称	$N_{OG1}(x_1)$	$\delta_1(x_2)$	$\delta_2(x_3)$	$b(x_4)$	$h(x_5)$	$D(x_6)$	t(x7)
变 量	X* 值	7([180×68)	1.8	1.0	28.0	34.4	8.0	1.0
目标函	数 (t)	0.955		2.5	5 6		0.	345

表 2 十字型底架总成优化设计结果

通过以上实际设计和一定的计算机模拟实践,我们有以下体会:

1)国内塔机行走式底架结构总成多数偏大,原因之一是力学模型过于粗草。如前述,行走式底架总成通常都是高次超静定空间桁梁混合结构,且有很多随机和可变因素,精确求解十分困难。因此,工程中为计算方便简单,作了若干假设,而其中的一些是欠妥的。例如在求撑杆轴力时,忽略底架主梁的弹性变形,或者 # 型底架尽管有斜撑加固,但计算时也不考虑,又如忽略部分外载(如扭矩 M'_{\bullet} 和车轮侧向力 P_{\bullet} 等)和主梁内力,只计垂直面弯矩等,均与实际差异较大。

⁺ 总成重3.857t。

*
<u>~</u>
₹ 7
王
3
#
幺
包
ĬŸ.
F
50
黙
世
副
#
赵
QT-80塔机井型底架原始方案和优化设计结月
<u> </u>
7
느
J
_
-

	始	**		긔	銤	~		۴	銤		李 ————
截面型	原方案	1		8				63			
	方案 1	-		61				81			l
式编号	方案 2	4		61		ļ		"			.
1 2	4	$Nog_1(x_{i+1})$	$\delta_1(x_{i+1})$	$\delta_2(x_{i+2})$	b(x _{i+3})	$h(x_{i+4})$	ð ₁	δ ₂	$b(x_{i+1})$	$h(x_{i+2})$	$Nog_2(x_{i+1})$
设订役重	×	•	1.4	1.2	40.0	52.2	1.4	1.2	30.0	37.2	:
	×.	•	1.6	0.8	35.0	26	1.6	8.0	25.0	40.0	•
(E)	 X	6([160×65)	1.8	80	26.0	47.0	1.8	8.0	40.0	49.0	3([140×58)
# H	各茶	9,+3	g ₃₊₁	9,+2	9,+4	9,+5		9,+2	9,+3	9,4	9,18
Η ₩ Σ	G(X°)		- 128.9	- 756.0	9*609 -	-0.313	-217.8	- 953.4	-801.2	-0.481	
ħ	$G(X_1)$		- 19,3	- 656.4	- 553.7	- 0.221	- 21.6	- 743.1	-618.4	- 0,235	l
₹ %	G(X;)	- 37.6	1 8 1	-655.4	-531.9	- 0.139	- 9,3	- 578.1	- 170,9	-0.175	- 567.1
目标函数	F(X°)			3,129	29			ຕໍ	3,787		
_	$F(X_1)$			2.658	58			ະຕິ	3,147		
£	$F(X_2)$	0,935	····	2.226	526			23	2,430		0.268
目标函数	方案 1			15.03	03			16	16.90		
下路举(%)	方案 2	-23,16		28.86	98			35	35,83		
• 塔男排杆采用	• 塔身撑杆采用原设计, D=14cm, t=1cm,	cm, t=1cm;	•原设计,方	方案 1 无斜梯,	•••底架	 ● ● 底架总成原置7.6756。方案1 置6.565f。方案2 質5.859f (不包括塔身第一书型。以下同)。 	t. 小粉 1 篇	3.5651。 方佛	9. T.S. 8591 (7	かなななな	1 計畫 三十二

- 2)理论分析和计算实践表明,对于 # 型底架,整体布置如无特殊要求,宜采用下梁垂直行走轨道的方式,上、下梁取上梁端面和下梁侧面相连结方式重量最轻,搁置式 简单方便,两种情况均宜用斜撑加固,上梁宜用工字形或单箱形,下梁宜用单箱形。
- 3) 就上述四种底架,#型和X型用得较多,但从发展趋势看,由于十字型底架具有构造简单、受力合理,设计方便,且重量较轻等优点,有可能逐步取代其余三种。
- 4)理论分析和计算机模拟表明,无论是何种型式的底架总成,撑杆轴力对撑杆截面积 A_{G_1} 均较敏感。当 A_{G_1} 加大时,撑杆轴力增大,而撑杆轴力的增大又能较大幅度地使主梁内力减小。这一现象表明,撑杆重量较小的增加可促成底架主梁重量较多的减小,从而使底架总成较轻。
- 5)通常,塔身撑杆上支承座是在塔机首次安装时配焊的,其配焊顺序有两种,一是先在主梁上放上压重,然后配焊支承座,另一种是先配焊支承座,装上撑杆,然后加压重。两种做法,力学模型不同,效果也不同。后者,由于压重的部分重量可通过塔身第一节架、撑杆、主梁、车轮直接传入轨道,故可改善底架主梁的受力情况,从而有利于减小底架总成的重量。

参考 文献

- 1 起重机设计规范。GB3811-83
- 2 美国 J.M 盖尔。杆系结构分析。水利电力出版社, 1983
- 3 同济大学主编。钢结构。建工出版社,1985
- 4 陈立周。关于约束非线性混合离散变量优化设计方法及软件包 MOD 的研究。 科技研究报告。 北京科技大学,1987
- 5 QT-80 塔机底架结构优化设计的研究报告。重庆建院、广西建机厂, 1987, 1988
- 6 QT-80A塔机整机优化设计研究报告。重庆建工学院、广西建机厂, 1989
- 7 喻志刚、王炳乐、宋立权、周首光。塔式起重机金属结构计算机辅助设计系统。重庆建筑工程学院学报,1990,12(2):118

(编辑: 刘家凯)

COMPUTER-AIDED ANALYSIS AND DESIGN FOR THE BASE STRUCTURE OF A MOVABLE TOWER CRANE

Wang Bingle Zhou Shouguang Song Liquan Yu Zhigang

(Dept. of Mechanical and Electrical Engineering)

ABSTRACT This paper is one of the achievements of the research item for computer-aided design of tower crane's steel structure. In the paper, taking the well-base structure as an example, first the method

establishing the mechanical model is explained for the base structure of a movable tower crane. Then the math model of its optimal design and the N-S figures for the computer program is described and calculated using discrete optimal technology. Finally the problems related to the design for the base structure of a movable tower crane are briefly illustrated.

KEY WORDS tower crane, base structure, computer-aided design